Rubidium strontium dating method

With rubidium-strontium dating, we see that rubidium-87 decays into strontium-87 with a half-life of 50 billion years.By anyone's standards, 50 billion years is a long time.The methods work because radioactive elements are unstable, and they are always trying to move to a more stable state. This process by which an unstable atomic nucleus loses energy by releasing radiation is called radioactive decay.The thing that makes this decay process so valuable for determining the age of an object is that each radioactive isotope decays at its own fixed rate, which is expressed in terms of its half-life.These differing rates of decay help make uranium-lead dating one of the most reliable methods of radiometric dating because they provide two different decay clocks.This provides a built-in cross-check to more accurately determine the age of the sample.So, if you know the radioactive isotope found in a substance and the isotope's half-life, you can calculate the age of the substance. Well, a simple explanation is that it is the time required for a quantity to fall to half of its starting value.

rubidium strontium dating method-14rubidium strontium dating method-3rubidium strontium dating method-84rubidium strontium dating method-79

Learn about half-life and how it is used in different dating methods, such as uranium-lead dating and radiocarbon dating, in this video lesson. As we age, our hair turns gray, our skin wrinkles and our gait slows.

However, rocks and other objects in nature do not give off such obvious clues about how long they have been around.

So, we rely on radiometric dating to calculate their ages.

Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the decay of different isotopes.

For example, with potassium-argon dating, we can tell the age of materials that contain potassium because we know that potassium-40 decays into argon-40 with a half-life of 1.3 billion years.

Leave a Reply